
DataStream

A S O F T WA R E T H R I L L E R

C H A P T E R 1

Meet Norman Swift- the Story Begins

It was a dark and stormy night. The clock struck one as Norman Swift was putting
the final touches on his plan for his first Skunkworks project. He was excited – at
long last, he was ready to test his cherished concept for a high-performance
software development paradigm.

Norm mentally reviewed the last ten software Projects at Norman Swift &
Associates. All had been disappointing, some disastrously so. In fairness, two were
not awful, because they were cancelled before the awfulness became apparent! He
wondered for the thousandth time why he was in the software game. “Because I
need to be in some game”, he muttered. “At least it's warm and dry here.”

Norman had identified the root problem long ago – Requirements Drift!

•	 We never get to design, build, test and deliver a Project without late-
arriving change orders tearing apart the fabric of our work.

•	 This happens because of the “I'll Know It When I See It” phenomenon.
You deliver a feature as specified and the user realizes that it is not what they
need. “Keep trying until I know it's right”.

•	 And this happens because business is complex and intricate, always in
flux.

BUT, we know these things, and they are not going to change, so why do we
not have a flexible Development Paradigm that welcomes late-arriving change
orders?

Why are we always surprised and devastated by the inevitable?

Duh!

Norman sighed. That sometimes seemed to help.

1

C H A P T E R 2

Norman Launches the Skunkworks
	 	 The crew straggled in to the conference room just before 9 am. They were
Eric, Brian, Ann, and Phil. They represented some 35 years of accumulated
software development experience.

	 Norm pushed the door closed and drew a deep breath. “OK, team, I have
Good news and Bad news.”

Brian:	 	 “Bad first.”

Norman: 		 “The Bad news is that we lost the Ziffer bid, so I have no
funded work for you guys.”

Eric:	 	 	 “That's pretty bad news, Norm. Not much room left for the
Good news.”

Norman: 		 “The Good news is that I have long wanted to do a
Skunkworks Project, and I am gonna launch it now during this slow period. And I
want you guys on my team. The funding is internal, since there is no client money
for this.”

Eric: 		 	 “What if we had asked for the Good News first?”

(laughter)

Ann:	 	 	 “No offense Norm, but this is not a rich company. How long
can the Skunkworks go on internal financing?”

Norman: 		 “We have four weeks. A month from now we will have
developed the Reference Application of a shiny new Software Development
Paradigm that I call DataStreamInfrastructure (DSI).”

Phil:	 	 	 “And we can do all that in four weeks you say? Norm, are you
new here?”

2

Norman: 		 “Guys, this is a powerful concept that I've been mulling over for
many years. Now is the time to launch it. It's now or never. In 5 weeks I will be a
prophet, or else the newest greeter at a Wally's.”

Eric:	 	 	 “OK, Boss, what is this new secret sauce?”

Norman: 		 “It's real simple – just two rules.

• One, we will record everything of interest, indelibly and unambiguously,
in Data Stream Records. That will be the sole enduring storage method
available.

• Two, all the computing will be done in Engines whose API is to read
and write DS records.

That's the new paradigm in a nutshell.”

Ann: 		 	 “That's it? That's your inspiration? It's kinda thin. This sounds
like the Unit Record punch cards in the 1950's. But we've come a long way since
then, Norm. “

Norman: 		 “Well, if this paradigm is as good as I claim, it will be apparent
from week one. You won't have long to wait.”

Phil: 		 	 “What's the Reference Application? Something simple, I
hope.”

Norman: 		 “Not so simple. I call it Acme Rentals – an equipment rental
chain of 100 outlets. They trade tools and supplies among stores and they need to
track rental and return times. Their asset base is over 100,000 items, big and
small. It's a significant logistics challenge, for sure! PLUS they need Business
Intelligence (BI).”

Eric:	 	 	 “OK, but this is a job for the ERP Giants, not for us. Jobs like
this consume a million man-hours.”

Norman: 		 “Yes, I agree with you Eric. The normal paradigms do need
that kind of effort. But this is a new broom. A Skunkworks. If the Reference
Application were smaller, the victory would be less dramatic.”

3

Ann:	 	 	 “So this is a David vs. Goliath kind of deal?”

Norman: 		 “Yup.”

4

C H A P T E R 3

DataStreamRecords are Specified

	 Norman:	 	 “OK, let's get started. Here's what we're gonna do. Make up a
Project Spreadsheet with a different Sheet for each type of DataStreamRecord.
These DataStreamRecords (DSRs) will be indelible, meaning that they are Read-
Only after creation.

So how are errors corrected? By means of a new DSR to be published when
the error is detected. Them's the rules.

We need to decide what is of interest to Acme. First and foremost, there is the
Asset Record. It describes each asset item in unambiguous detail. So there needs
to be the Serial Number, Manufacturer, Date of Acquisition, Description, Price
paid, etc.”

Eric: 	 	 “Not certain that I agree with you there, chief. Your Date of
Acquisition implies this item is unique, whereas Acme has several of everything.
Best to have an Asset Descriptor Record that is prototypical of the asset model. So
it just needs Acme Inventory Number, Model Number, Manufacturer. Other traits
like Serial Number, Colour, Date of Purchase, Price Paid, etc. can be in a different
Record – call it Item Record.”

Norman: 	 “Good observation, Eric. Well, the record names can change as
we mature here and the big picture becomes clearer. What's important is that the
Sheets each include the Fields that are necessary for that DSR to be authoritative
and unambiguous.”

Norman: 	 “Ann will maintain a central Dictionary of the DSRs. We have
to protect the integrity of the field definitions closely.”

They made steady progress. Each DSR formation issue was decided by Acme's
business policies and rules. It took most of the day to codify all (or most) of these
rules.

5

At 4:30 pm Norm summarized the day.

Norman: 		 “OK Team, we are 5 person-days into the Project and already
we have laid the keel for the good ship Acme Rentals, because we have defined
some 27 key DSR types.”

	 1.	 ITEM DESCRIPTION

	 2.	 ITEM PURCHASE

	 3.	 ITEM RENTAL

	 4.	 ITEM SALE

	 5.	 ITEM REPAIR

	 6.	 ITEM LOSS

	 7.	 CLIENT PURCHASE ORDER

	 8.	 STAFF PAYROLL ITEM

	 9.	 STAFF VACATION ITEM

	 10.	 EXPENSE PAYOUT

	 11.	 WHIMIS REQUEST

	 12.	 ITEM USER MANUAL REQUEST

	 13.	 CAPITAL EXPENSE – REPAIRS

	 14.	 ITEM INTER-STORE TRANSFER

	 15.	 RENTAL OPPORTUNITY LOST

	 16.	 ITEM RESERVATION REQUEST

	 17.	 ITEM RESERVATION GRANT/DENY

	 18.	 UTILITY METER READING

	 19.	 DOOR ACTIVITY

	 20.	 SECURITY ALARM ACTIVITY

6

	 21.	 STAFF TIMECLOCK ITEM

	 22.	 VEHICLE ITEM

	 23.	 FUEL PURCHASE

	 24.	 LUBRICANT PURCHASE

	 25.	 SUPPLIES PURCHASE

	 26.	 VENDOR DEMOGRAPHICS

	 27.	 CLIENT DEMOGRAPHICS

Phil:	 	 “I like this process, Norm. It seems like we are actually
accomplishing something here.”

Brian: 	 “Yeah, because this foundation work will endure regardless of
Specification Change Orders down the road.”

Ann:	 	 “Not to be negative, Norm, but all we've done is list these records as
being “of interest” to Acme Rentals. We have not done the work to create even
one of these.”

Phil:	 	 “Ann, you're looking at this wrong. The DSI Paradigm is supremely
Liberating! Because it separates the creation from the storage from the use of
these records. We can proceed with these tasks in any order, and with good
confidence that we are contributing to the final solution. We've never had that
before!”

Ann:	 	 “Hmmm.”

Eric:	 	 “Norm, this is the first day at Swift & Associates that I've truly
enjoyed. We have made solid progress with good harmony. Every disagreement
has been resolved using this method and nobody got angry.”

They broke at 5 pm.

7

C H A P T E R 4

The DataStreamSchema is Designed
On Tuesday morning Norman launched his team into Day 2.

Norman:	 	 It's time to build the DataStreamInfrastructure so we can make
the data we have defined available to the engines we are going to build. I want this
to be a cloud application and we are going to use a standard database product to
store the data.

Ann:	 	 	 I nominate MYSQL. It's free, sophisticated and there's lots of
help out there.

Norman:	 	 I agree Anne. MYSQL it is.

Brian:	 	 As I see it we first need tables to store the data about the data.
That is the metadata. I see several tables. The first describes the data record (an
identifier, a record descriptor and a tenantID so we can accommodate more than
one company). The second describes the fields in the record. This will include: a
record type (which is the link to the identifier in the record descriptor), the field
number, field name, length, type, a description and the requisite tenantID.

Ann:	 	 	 That seems simple enough. What about storing the data?

Brian:	 	 I see two tables: The first stores the record information (a
unique key, a record type that links to the identifier in the record descriptor, a date
time to tell when the record was created, a status to indicate if this is an original
record or a modification of a previously created record, the creator's identifier and
the tenantID. The second will hold the actual data and will have a record for each
field. It will have a unique key, a record number that links back to the record
information table's key, the field number, the data and the tenantID.

Norman:	 	 Let's store the data in strings. A string can characterize any
data and I'm not worried about storage efficiency here. You can buy a terabyte
disk for $100.

8

Eric:	 	 	 There's going to be a lot of data here Norm, Storage isn't a
problem as you say, but search times might be.

Brian:	 	 Let's generate working tables for each data type. The user
interface can work with the working tables and the DSR will mirror what goes on
in these tables. The tables will contain only the data of a specific type so we will
divide and conquer.

Eric:	 	 	 If we keep the DSR and the working tables synchronized so
that when we change one, we change the other, we can reduce the times we have
to re-construct the working table. This will make things peppier.

9

C H A P T E R 5

The User Interface is Started

Later Tuesday morning Norman got into the GUI (Graphical User Interface).

Norman:	 	 So how are our clients going to interface with our new
paradigm?

Ann:	 	 	 Cloud. It has to be a Cloud Application.

Norman:	 	 Why is that?

Ann:	 	 	 Well, we don't know what infrastructure our future clients will
have. It could be Windows or an Apple OS X or Linux. We don't know what the
state of their hardware will be. All a cloud app needs is a browser and that's
available on pretty much any system. Also, deployment will be butt simple (excuse
my French). Web applications will scale with the enterprise and we can find multi-
lingual support. The Cloud is where it's at these days.

Eric:	 	 	 What about security?

Ann:	 	 	 Cloud security is improving all the time. Access can be through
an encrypted connection and the sign-on security will be the same as for an in-
house application. The data will be housed in a data fortress and backed up by
professionals and all this goodness happens without the client requiring an I.T.
Staff.

Norman:	 	 O.K. You've convinced me. What web application will we use?

Ann:	 	 	 There are many. I would look for one that provides the easiest
development process but has enough features to allow us to do some sophisticated
things.

Norman:	 	 O.K. Anne. Do some research and let me know what you
recommend in a few hours.

	 Later

10

Ann:	 	 	 Norm, I think WaveMaker would be a good choice for us. It
uses JAVA and JavaScript coding and has tools for deployment and database
activities. The drag and drop table tools will allow us to quickly provide a user
interface to the working tables and we can express the business logic in JAVA on
the server.

Norman:	 	 I trust your opinion Anne. Lets go with Wavemaker.

	 Even Later

Ann:	 	 	 I installed WaveMaker and MYSQL and put up the
preliminary database. I created an input screen for the DS metadata and I've
loaded the data definitions that we decided on. I am also developing an
application that will generate working tables from the data definitions.

Norman:	 	 Good work Anne. You're a dynamo!

11

C H A P T E R 6

The First Engine is Designed

On Tuesday morning Norman launched his team into Day 2.

Norman:	 	 “Yesterday we laid the keel of the good ship Acme. Today we
will begin crafting and welding together the parts of the ship - the decks, pumps,
engines, propellers, etc.

In our DSI Paradigm we will need logic routines to act on the DSRs, in order
to express Acme's business rules while conducting Acme's minute-by-minute
business. I call these Logic Engines.”

Ann:	 	 	 “Norm you are waxing poetic about this design – likening it to
a ship.”

Norman: 		 “Well, the software designs built using the DS paradigm will
always be elegant. Even after the late-arriving change orders.”

Eric: 		 	 “OK, great. But what about the other types of business rules
that cannot be expressed through these Engines. How will that logic be
expressed?”

Norman:	 	 “Don't worry about that happening. The set of {business rules
that cannot be expressed through these Engines} is a Null set.”

Norman: 		 “The Engines all use the same interface or API. Who can guess
what that API is?”

Eric: 		 	 “Haven't got the foggiest clue, Boss.”

Ann:	 	 	 “Me neither.”

Norman: 		 “Would you be surprised if I said that the API is Read / Write
of DataStreamRecords?”

Eric: 		 	 “You mean these Engines can Read DSRs and Write DSRs
and that's all they can do?”

12

Norman: 		 “Yes, exactly.”

Ann: 		 	 “But where's the GUI located?”

Norman: 		 “The user-facing GUIs are all inside Engines.”

You could hear a pin drop.

Eric:	 	 	 “OK, and where's the master Database? We have not even
begun its design. So how can this work?”

Norman:	 	 “Sure there's a Master Database. That's what we did
yesterday.”

You could hear a pin drop.

Eric began deep breathing, loudly.

Eric:	 	 	 “I'm having a panic attack over here!”

Norman: 		 “This is a new paradigm. This is business as UN-usual. Our
“database” is the accumulation of the DataSteamRecords. That's how we do
things here. Trust me, Acme Rentals will be well served.”

Ann:	 	 	 “OK, how will these Engines communicate with each other
and with DSRs? We're gonna need a message protocol.”

Norman: 		 “The protocol is Publish & Subscribe. Each Engine Subscribes
to DSRecords of specified Types, meaning the Records which carry data that are
relevant to the Engine's mission. Recall that each DSR Type is on a separate
Sheet.”

Phil: 		 	 “And each Engine Writes DSRecords that are the result of its
mission, to express the Business Rules of Acme Rentals?”

Norman: 		 “Yes, exactly.”

You could hear a pin drop.

Ann: 		 	 “But, nobody does computing like that these days. This is
antiquated Unit Record thinking. It's 1950's stuff. We'll get fired!”

13

Norman:	 	 “This new paradigm is a resurrection of an old paradigm,
empowered by modern technology.”

Eric: 		 	 “OK, so give us an example of an Engine that only does R/W
of DSRecords.”

Norman: 		 “Well the Engines are inspired by the transactions that Acme
performs during its daily business. Say I come to the counter and want to rent a
claw hammer, which is Item #129 in the catalogue. We create and Publish a DSR
saying “Need 1 of #129 at Store 12 for 14:00 on Oct 9-12”. Because those are the
facts of interest just now. No need to identify me as the client yet.”

Phil: 		 	 “So we Published a DSR. Then what do we do?”

Norman: 		 “We wait.”

Ann:	 	 	 “And what are we waiting for, Norm?”

Eric:	 	 	 “I know! We are waiting for a DSRecord sent by an Engine
that Subscribes to 'Need' records, and will inform us as to availability of Item
#129. It checks its hidden database of inventory and sends this DSRecord: “Send
1 of #129 SN 762345 to Store 12 for Oct 9-12”.”

Norman: 		 “Correct! The whole population of Engines can see the DSRs,
or the ones they Subscribe to.”

Ann: 		 	 “Where exactly are the Indelible Storage units located?”

Norman: 		 “They can be located anywhere on the Internet, and the
Engines can be located anywhere, as well.”

14

C H A P T E R 7

The First Database is Designed
	 	 Norman: 	 “OK, so Phil I need you to make a Database (DB) of the Items
available for sale.”

	 Phil: 	 	 “But Boss, you said there would be no DB's. That sure was a
short-lived rule!”

	 Norman:	 “I said the DSRecords are the enduring, eternal store in our
Universe, and NOT the central relational database that everyone else uses. But we
are free to make HIDDEN databases to facilitate the work inside our Engines.
“Hidden DB” means that the DB is never exposed outside its host Engine, and if
it crashes it is easy to rebuild from the historical DSRecords.”

Phil: 		 	 “OK, I see the difference now. Still, we need a DB Analyst
don't we?”

Norman: 		 “No we do not need a DBA. Because we are all capable of
making small DB's and that's all we will need. If we had a DBA she would take
over the Project and I can't let that happen.”

Phil: 		 	 “OK, I get it.”

Norman: 		 “Phil have you heard of “Green Databases”?

Phil:	 	 	 “Yes – that's when a DB has just one user. It is very rare in
practice.”

Norman:	 	 “Correct! And our Hidden DBs are Green. We do NOT share
them with other users because there's no need. Each user will build his own
Hidden, Green DB from DataStreamRecords.”

Phil: 		 	 “OK. But how am I supposed to make the Database?”

Norman:	 	 “The DSRs have recorded every event in Acme's business
history. All the things that Acme owns were purchased, right? So you can build

15

the DB from the Purchase DSRecords. And you can assume that there's a start-up
spreadsheet given to us.”

16

C H A P T E R 8

ACME’s Business Intelligence
is Begun

	 Norman: 		 “Brian, I want you to get started on the BI for Acme.”

Brian: 	 	 “Now Norm, you have gone over the brink! How on earth can
I do BI before any DB exists? Anything I write would be a guess and will certainly
be scrapped later in the Project.”

Norman: 	 “There you go again, assuming a central DB when you know it
won't exist. Central DB is for THEM, not for US.”

Brian: 	 	 “I'm beginning to get your message. You're gonna tell me that
the BI will always come from the accumulated Transaction DSRecords.”

Norman:	 	 “Yup. The DSRecords will certainly capture all the
transactions that BI seeks to analyze, for the simple reason that the DSRecords
CAUSED every transaction to happen. Nothing moves at Acme Rentals unless
DSRecords cause the movement. So no detail can hide from DSI analysis.”

Brian: 	 	 “Yes, that is a proof, Norm. OK, I will get started on BI, as you
asked. And I will do the work with full confidence that I am contributing to the
final solution, even though that solution has barely been sketched out!”

Norman:	 	 “That's the stuff, Brian!”

17

C H A P T E R 9

ACME’s POS is Begun
	 Norman: 		 “Now, what shall we do for a Point Of Sale (POS) system? Who
has some ideas?”

Brian: 	 	 “OPEN/POS does a nice job.”

Eric:	 	 	 “I think we need to do our own POS, in DSI.”

Brian: 	 	 “That's goofy. It takes years to do a POS system. I know, I've
been there.”

Eric: 		 	 “Granted. But now we're a Skunkworks, and we perform
Miracles every day. Besides, what is a POS but what we've been doing from the
start? All we need is a method to sum up the prices and collect payment.”

Brian: 	 	 “I can't really argue with that, Eric.”

18

C H A P T E R 10

ACME’s Loyalty Reward Program
is Begun

 Norman:	 	 “Now we need a Loyalty Reward system. It pays $20 off, say,
on every 5th rental invoice. Of course, it ties into the BI system because it is an
incentive for the clients to give us their ID. We can do a lot more with BI if we
know who our clients are.”

Ann:	 	 	 “These transactions will have to be at the same retail store,
right? We can't give credit for transactions system-wide.”

Brian:	 	 “Now Ann, why would you say that?”

Ann: 	 	 “Because it's obviously true! If we want system-wide credit then
we will have to launch a loyalty server, or sign up with a commercial service.”

Eric:	 	 	 “How about this concept – let's build a Loyalty Engine and
have it subscribe to all the sales data. It will certainly be system-wide, because DS
is system-wide!”

Ann: 		 	 “OK, I see what you are saying. Yes, we can do that! The
Loyalty Engine will publish a Reward DSRecord when it calculates that a $20
reward has been earned, because this is the 5th transaction for this client. And the
POS system will subscribe to these Reward DSRs, and will deduct the $20
discount from the amount owing, if the DSR specifies this client as the recipient.
Sure, that will be easy to build.”

Norman: 		 “Now Ann, why did you expect that Loyalty would be
difficult?”

Ann: 		 	 “Norm, just shut up.”

19

C H A P T E R 11

ACME’s WHMIS System is Begun
 Norman: 		 “Now we need a Workplace Hazardous Materials Information
System. Acme Rentals is required to inform clients about potential hazards with
their rental equipment and supplies.”

Phil:	 	 	 “OK, this should be easy. All we need is an Engine to subscribe
to the items rented and check a hidden database against WHMIS requirements.
When we get a match, we Publish a DSRecord with the pdf file name of the
sheets that need to be printed and handed to the customer. These files will be on a
server, I suppose.”

Norman:	 	 “OK Phil, get started with that approach and we'll see how it
performs.”

20

C H A P T E R 12

ACME’s Gift Card Program is Begun
 Norman: 		 “Now we need a Gift Card interface. Who knows about that?”

Ann: 		 	 “I worked on an interface last year. There are stored value
cards and central lookup cards. Some systems require a high-security terminal at
POS so the transaction messages are secured.”

Norman:	 	 “Sounds like the Gift Card interface can be a function of the
POS Engine, then.”

Ann: 		 	 “Yes, we could do that. Or, we could make a GC Engine that
happened to be running on the same PC as the POS Engine.”

Norman:	 	 “OK, so the DSRecords would be Published the same,
regardless of the method used?”

Ann: 		 	 “Maybe. I'll get back to you on that.”

21

C H A P T E R 13

ACME’s Payment System is Begun
 Norman:	 	 “Now we need a Payment capability. That means Cash, Credit
Card, and Open Account Terms for the trades. I suppose the POS Engine will
either:

a) Publish a DSRecord to say that money was received in cash, or

b) Publish a DSRecord to say that money was received from a payment
terminal at the Retail counter and describe the tender type, or

c) Publish a record indicating the sale was comped along with the authorizer's
name.

d) Publish a request for Open Account credit from the AR Engine.”

Ann:	 	 	 “In case (c), an AR Engine will subscribe to these requests and
it will check against the account status, and the engine will create a DS record
indicating that credit was extended or denied.

Eric: 		 	 “How will we balance the Cash?”

Phil: 	“Of course, the sum of the DSRecords with cash payment must be the
net amount in the drawer.”

Norman:	 	 “The cash Float amount? It can be declared in a DSRecord at
the start if the day.”

Brian: 	 	 “Pickups and Loans can be DSRecords through the day. And
also Payouts.”

Norman:	 	 “So we are creating our custom POS system for Acme Rentals,
bit by bit.”

22

C H A P T E R 14

The Skunkworks Goes Home-Office
 Norman: 		 “OK now comes a big change. We're all gonna work from
home. That will save the cost and time of commuting. We will meet Friday
mornings at some central place. We can be in frequent contact by Video Skype.
We all have cable Internet at home.

	 Here are the productivity standards that I expect each member to meet. I
want three new Engines per week – even if they are prototypes that don't do much
yet. But they are publishing and subscribing the specified DSRecords. Also, I want
constant deliverables after week 2. That means a working system that is always
running, and gains functions every week. Our deadline is 2 months. So we will
have gained a factor of 25 in productivity!

	 If there is a big disagreement in methods then we will build both. No need for
conflict in the DS Universe. Because the cost is low, we can afford to be playful
with Engine logic.”

Phil: 		 	 “Woo Hoo!”

23

C H A P T E R 15

The Skunkworks Gains
Additional Developers

 Norman: 		 “We are falling behind with the Engine production. How can
we speed this up? Without killing ourselves, I mean. We support the '9 -to-5
Company' goals.”

Eric: 		 	 “How about Elance. We know how to specify the logic for a
new Engine, and we can declare the DSRecords as C strings. It is easy to test
Engines to see if they perform as required. So let's post the Engine production on
Elance.”

Ann: 		 	 “You know, that could work! If we identified 4 contract
programmers and they could each build 2 Engines per week, we'd soon have the
20 Engines we need.”

Norman: 		 “Yes, at that rate it'd take 20/8 = under 3 weeks. Let's give it a
try!”

24

C H A P T E R 16

New Fields Are Added To A DSRecord
 Ann: 		 	 “I hate to be the bearer of bad news. But the record type 12
needs two new fields. Sorry to be disruptive.”

Eric: 		 	 “Not a problem Anne, just define a new DSRecord, type 122
and make it the same as Type 12, but append the 2 fields. Then the old Engines
will be compatible.”

Phil: 		 	 “This is great! This avoids the pollution of cell definitions that
happens with normal RDBs. You know – the disaster when a Field definition is
altered but nobody knows exactly when or what is was before the change. That
erodes confidence in historical data, and makes the DB suspect, unreliable.”

Brian:	 	 “Should the Engine that publishes DSRecord type 122 also
publish type 12, to be polite to the old subscribers?”

Eric: 		 	 “Yes. Or, perhaps another Engine could take on that task - i.e.,
to publish a type 12 whenever it sees a type 122.”

25

C H A P T E R 17

A New Engine is Tested with Old Data
 Norman:	 	 “We have refined several Engines to work better, based on
experience in the stores. How can we test these new Engines?”

Ann:	 	 	 “Not a problem, Boss. We can simply feed them the historical
DS Records and watch what they do. In effect, we can re-live the past and see how
these Engines would have performed had they been in existence back then.”

Phil: 		 	 “That is so cool! I don't think any other paradigm supports that
capability.”

26

C H A P T E R 18

A New BI Strategy is Mandated
 Norman:	 	 “There's a new VP Sales at Acme and he wants a new BI
strategy. It's something weird he learned at B-School.

Ann: 		 	 “Not a problem. Whatever it is we can code a BI Engine for
him.

Brian: 	 	 “But won't that upset the users of the existing BI Engine, to
make this change?”

Norman:	 	 “Well there can be a dozen BI Engines. They do not collide.
And they are all cheap to run. So everybody wins!”

27

C H A P T E R 19

A Supervisor Engine is Designed
 Norman: 	“We have invented several dependencies, where an Engine is
waiting for a response from another Engine. But what if that response does not
come? We'll have a stalled business process and that is ugly!”

Ann: 	“Yes, I've been thinking about that danger. How about a Supervisory
Engine that looks for over-due responses. Of course everything is visible in the
DSI stream.

Norman:	 “OK. And we could also Publish an “Overdue DSRecord” when an
Engine feels it has not received service in a reasonable time. The Supervisor can
then launch a new Engine to do the required work.”

Ann: 	“And the helpdesk can subscribe to these alerts so they can make changes
if needed, even before anyone knows there's a problem.”

28

C H A P T E R 20

A Publish and Subscribe Service
is Harnessed

 Phil:	 	 	 “Norm, let me do the Publish & Subscribe infrastructure. I
learned a lot about it at a previous job.”

Norman:	 	 “OK Phil, go ahead. You will probably use an Open Source
solution?”

Phil: 		 	 “Yes, of course. Stay tuned.”

29

C H A P T E R 21

Syslog Messages are Launched
 Brian:	 	 “We got a crazy request from a client. He wants to interface
with Kiwi Syslog to send alerts when certain conditions are triggered. He knows
the DSRecords he wants to use, and the trigger algorithms. I guess we can make a
Syslog Engine for him, eh?”

Ann: 		 	 “You bet we can, Brian!”

30

C H A P T E R 22

Building Security is Designed
 Phil: 		 	 “We got a request for building security. This means door access
RFID cards, door switch monitoring, etc. Can we do this in DSRecords, or would
this be polluting a financial system with foreign data?”

Norman:	 	 “No fear of pollution! All types of DSRecords are welcome.
We have a huge capacity and the Records are inherently small.”

Ann:	 	 	 “In fact, building access can be a huge clue in an audit process.
If stock goes missing, then it is helpful to know who came and went, and at what
times and dates.”

31

C H A P T E R 23

Disaster Recovery is Designed

Ann:	 	 	 “Every company needs a DR plan. With Indelible DSRecords,
it is always easy to re-establish all the hidden databases from the DSRecord
history. So the company is up and running in no time! We can easily run DR
simulations to test and demonstrate this capability.”

32

C H A P T E R 24

e-Discovery is Designed
Norman: 	 	 	 “In the modern world any company can face the need for
e-discovery. This can come from a lawsuit or a search warrant, say. This is similar
to Assured Chain of Custody.”

33

C H A P T E R 25

Assured Chain-Of-Custody is Designed
Norman: 	 	 “A class of clients will need assured chain of custody for legal
reasons. We can achieve this by storing the Published DSRecords in multiple
synchronized repositories around the Internet. Some can be Third Parties. We can
thereby assure that nobody ever had access to all the stored DSRecords and could
have fiddled with them. In every case the DSRecords are Indelible. They are
write-once, read many. The Lawyers will love that!”

34

C H A P T E R 26

ACME Rentals Gains an Online
Reservation System

 Norman:	 	 “How should we approach Online Reservations?”

Phil: 		 	 “We need a Rental Engine of course. It will present a browser
interface to allow customers to see the catalog of items, and select items and
declare a date range of desired use.”

Eric: 		 	 “OK, that's most of the work done, and we can use standard
tools or even re-use something from the past. Then we will need to Publish these
“Need” DSRecords.”

Ann: 		 	 “Yes, and they will be serviced just like that #129 claw hammer
that Norm rented. Except the Date is not today, it is a future date.”

35

C H A P T E R 27

ACME Rentals Gains an Inter-Store
Transportation System

 Norman:	 	 “Now we will need a method for items to be transported
between stores to meet the Reservation commitments, and to balance stock in
general. This is key to Acme's operating costs. If sharing is not efficient then Acme
will have to buy too much inventory.”

Eric: 		 	 “Yes, this will be a key aspect of our sales pitch to Acme
management.”

Ann:	 	 	 “OK, so the Reservation system will Publish a DSRecord for
each item transport – stating the Item #, the source store and the destination store.
A second Engine might aggregate these Transport Records and create a Manifest
for the shipper/receiver staff.

Norman: 		 “This is a tricky area. I expect we will create 2 or more
methods using different Engines and test them for best performance.”

Eric:	 	 	 “I like that! Because the Engines are cheap to write, we can be
playful with them and try different approaches and philosophies. That is HUGE!”

36

C H A P T E R 28

The Team Tackles Asset Management
 Norman: 		 “The Department of National Defense has asked our
assistance with their Asset Management project. It began in 2001 and is now
scheduled to complete in late 2013. The DND is seeking a new direction and they
think we may be able to help.”

Eric: 		 	 “Yes, I read that they have spent many tens of millions on this
and have continually failed. What has gone wrong, I wonder? How is this
seemingly mundane goal so elusive?”

Ann:	 	 	 “I suspect they have always approached it as a Database
problem. But they are always facing anarchy in their space. I mean, their assets are
always on the move and getting blown up and such.”

Phil:	 	 	 “I'm certain we all agree that Asset Management is a perfect
assignment for DSI. It's a walk in the park for our DSI Paradigm.”

Norman:	 	 Eric, can you suggest a project plan for this, off the top? Do
you need a 10 minute break to collect your thoughts?

Eric: 	Surely you jest! Stay seated - I do not need 10 minutes to analyze this
application!

Step 1 is to tag every asset at Receiving, before payment is authorized to the
Supplier. The tag can be RFID, or optical Barcode, etc.

Step 2 is to provide lots of RFID / Barcode readers that can report to the
Cloud whenever they detect an asset tag. They will append the GIS info and the
time and emit a DSRecord just to say, “This asset is here, now.”

Step 3 is to collect all these DSRecords in the Cloud and store them indelibly
in a DSI repository, like we always use.

Step 4 is to write Engines that crawl over the DSI repository to create reports
and perform analysis.

37

Norman: 	“Sounds about right. What are the chances that we would fail at
this project, like all those who have gone before us?”

Ann: 	“You're joking, right? How could we mess this up? It's so simple and
direct.”

Phil: 	“Our 'silver bullet' is that the DSI Paradigm does not need a Master Plan
in order to succeed. We do not need to interview every stakeholder in the Military
in order to get started. We just create the infrastructure to capture and record the
presence of an asset at a location at a time and then send that DSRecord into the
Cloud to be indelibly recorded. Nothing more is required. All the Analysis will be
deferred to Engines which can be written for any purpose anytime in the future.”

Norman: 	“How is it possible that we can have full agreement on a Plan after
10 minutes of discussion, when all the teams that have gone before us have
failed?”

Eric:	 “It's the power of the DSI Paradigm, Boss. It just eats problems for
breakfast.”

38

C H A P T E R 29

The Team Tackles a Gun Registry
 Norman: 		 “The Quebec government has asked our assistance with their
Gun Registry project. The Federal project began in 1995 and has absorbed close
to $1 billion. Quebec would like to spend $1 million to build a new Provincial
registry. They think we may be able to help.”

Phil: 		 	 “I'm certain we all agree that a Gun Registry is a perfect
assignment for DSI. It's a walk in the park for our DSI Paradigm.”

Norman:	 	 Eric, can you suggest a project plan for this, off the top? Do
you need a 10 minute break to collect your thoughts?

Eric: 		 	 Surely you jest! Stay seated - I do not need 10 minutes to
analyze this application!

Step 1 is to record the gun make and model number, serial number, and the
Social Insurance Number and Drivers Licence number of the gun owner. This
can be done at the Registration office – probably a police station or hunting
licence office, etc. Print a receipt and tell him to come back tomorrow for his
registration.

Step 2 is to form a DSRecord by appending the GIS info and the time and
publish into the Cloud a DSRecord saying, “This gun owner is seeking to register
this gun here, now.”

Step 3 is to subscribe to Approve/Deny DSRecords from any Engines that are
empowered to do that.

Step 4 is for the issuing office to print the registration documents if there are no
Denials after all the votes are in.

Step 5 is to write Engines that crawl over the DSI repository to create reports
and perform analysis.

39

N - 	 “Sounds about right. What are the chances that we would face major
cost overruns in doing this project, like those who have gone before us?”

Eric: 		 	 Well, a late arriving change might involve the court system
being able to deny a gun registration if the gun model is prohibited, say. Or the
Owner has unpaid fines.

Phil:	 	 	 “Not problems. We'd just create an engine to subscribe to the
Registration DSRecord types, and then perform its search logic, and publish an
Approve or Deny record. The issuing office engine would be programmed to
subscribe to these records and proceed accordingly. Every conceivable change
along these lines could be easily accommodated.”

Ann: 		 	 “It's so simple and direct.”

Phil:	 	 	 “Our 'silver bullet' is that the DSI Paradigm does not need a
Master Plan in order to succeed. We do not need to interview every stakeholder in
the the Quebec Police and Court systems in order to get started. We just create
the infrastructure to capture and record the request to register a gun at a location
at a time and then send that DSRecord into the Cloud to be indelibly recorded.
Nothing more is required. All the Analysis will be deferred to Engines which can
be written for any purpose any time in the future.”

Norman: 		 “How is it possible that we can confidently endorse a Plan after
10 minutes of discussion, without interviewing the Quebec stakeholders?”

Eric: 		 	 “It's the power of the DSI Paradigm, Boss. It just eats problems
for breakfast.”

40

C H A P T E R 30

The Team Concludes That DSI is Agile
 Norman: 		 “We have an RFQ from the City. We can do the work easily,
and we will certainly be the low bidder, because we can develop a compliant
system in the fewest person-hours than any competitor. BUT the City insists that
they will only consider vendors who are using Agile Programming methods. “

Ann: 		 	 “Hmmm, are we?”

Eric:	 	 	 “I reviewed their 'Twelve Principles of Agile Software'
document and I believe we are covering every item they have listed, and more.”

	 1.	 Satisfy the customer through early and continuous delivery

	 2.	 Welcome changing requirements, even late in development

	 3.	 Deliver working software frequently

	 4.	 Business people and developers work together daily

	 5.	 Build projects around motivated individuals

	 6.	 Convey information via face-to-face conversation

	 7.	 Working software is the primary measure of progress-

	 8.	 Maintain a constant pace indefinitely

	 9.	 Give continuous attention to technical excellence

	 10.	 Simplify: maximize the amount of work not done

	 11.	 Teams self-organize

	 12.	 Teams retrospect and tune their behaviors

http://agileinaflash.blogspot.ca/2009/08/12-principles-for-agile-software.html

Phil:	 	 	 “I agree. We are especially good at this requirement
'Simplicity--the art of maximizing the amount of work not done--is essential.' “

41

http://agileinaflash.blogspot.ca/2009/08/12-principles-for-agile-software.html
http://agileinaflash.blogspot.ca/2009/08/12-principles-for-agile-software.html

Norman: 	 “OK, I will write up our Quote and submit it tomorrow.”

42

C H A P T E R 31

The Team Tames a Lion
 Norman: 		 “Here's an interesting new request. The Lions Club is trying to
archive its historical photos, scanned documents, videos and such. They need to
secure this material against damage, and it's important to identify the Lions in old
photos because the knowledge is leaving their clubs as people pass on.”

Ann: 		 “This is a good deed, Norm. And every service club has the same
problem.”

Eric:	 	 	 “I have seen boxes and boxes of material come from Estates.
The Clubs have no place to store this material. They must get it into digital format
or it will be lost!”

Phil:	 	 	 “I know they have a problem with choosing image formats, and
they need some type of online storage so they aren't dependent on a drive that is
passed from member to member.

Norman: 		 “OK, let's make a DSI plan to save the Lions' history. Eric, it's
your turn to take the lead.”

Eric: 	“Right, Boss. Well we know the drill by now.

Step 1 - Create DSRecords to describe each archive file.

Step 2 - Establish an email address where members can send scanned image
files as attachments. They can use Dropbox to copy the files out to the Cloud
storage. This will avoid the slow upload speeds. Each file will have a unique
number in the file name and it will always be accessible by that identifier.

Step 3 - The librarian volunteers will capture all data they can about each file
item, and record this data in the DSRecords.

Step 4 - Build a few search Engines to assist with searching the archive for
materials of interest. Most often the search will be for a member's name. But also

43

for documents like rosters, budget documents, advertising flyers, event agendas,
sales tax filings, Reports to the Lions head office, etc.

Ann: 		 	 “Eric, where will the unique file numbers come from?”

Eric: 		 	 “There could be an engine that issues these, assuring that 2 files
never have the same ID. Perhaps the Dropbox service can assign the ID as each
new file arrives in the Cloud? At any rate, we can't burden the volunteers with this
task - it's too important and needs to be done centrally.”

44

C H A P T E R 32

The Team Controls Traffic Signals
 Norman:	 	 “Well, here's an RFQ that we will have to pass on. It's for a
Traffic Control Computer for the City. That's a very specialized technology and
we have no clue how to approach it, right Team? “

Eric:	 	 	 “Whoa, not so fast there Chief ! This is a pet project of mine –
I think about to all the time while I'm out driving.

Ann: 		 	 “OK, Boy Wonder, just how are you gonna stretch DSI to fit
this gig?”

Eric:	 	 	 “As always, DSI is so simple.

	 Step 1 – Realize that what drivers want is to join a cohort at a red light, and
have that cohort see only green lights for its whole journey on a major street. This
minimizes idling at Reds and reduces pollution.

	 Step 2 – The Signal Controllers that the City has installed are “synchronized”
in groups of up to 10 Intersections. The problem is that the groups are not
synchronized, and the Controllers may be set to hasten the Green for a car on a
side street. This is bad because it breaks the flow of the cohort, and often creates a
new cohort by cutting the original cohort in two.

	 Step 3 – Publish DSRecords when each Signal turns Red, Green, and when a
Pedestrian Call button is pressed.

	 Step 4 – Create Logic Engines to monitor the experience of each cohort on
all major streets. These engines can Publish DSRecords to request that a RED
phase be lengthened by a few seconds, in order to re-synch a cohort. This is a
gentle nudge in the right direction.

	 Step 5 – Create a Supervisor Logic Engine to analyze all these nudges and
Publish DSRecords to instruct the Controllers to alter their timing.

45

That's about it. The historical DSRecords can be analyzed after the fact to
assess the overall benefits, and to detect opportunities for improvement in the
Engine algorithms. This will be different for each City.”

Norman:	 	 “OK, I get it now. Good work, Eric. You are proposing a
supervisory system that gently nudges the phase of the lights into the best
synchronization for the traffic flow. “

Phil: 		 	 “Wow, you could alter the algorithms for time of day, to
facilitate rush hour periods.

Ann: 		 	 “And at night you could shorten the RED periods since the
cohort size is smaller and clears a light in less time.”

Eric: 		 	 “What about car present loops? Can we use DSRecords from
these?”

Phil:	 	 	 “Sure, does no harm to have extra information. I'm sure that
some of the Engines will find a way to use those traffic clues.

46

C H A P T E R 33

The Team Wrestles with
BPM, DCM and CRM

 Ann:	 	 	 Norm, I was reading this IBM-sponsored article last night,
about strategies for building the best case-management architecture: http://
docs.media.bitpipe.com/io_10x/io_101940/item_478548/IBM_ebizQ_LI
%23478548_E-Guide_111111.pdf

Frankly, it seems that we might be missing the boat on BRP (Business Process
Management) and DCM (Dynamic Case Management) and CRM (Customer
Relationship Management). Do they know something we don't?

Norman:	 	 Funny, I read the same paper last night! And I had a hard time
comparing our paradigm to theirs. It seemed like they are all wound up in
unproductive debate, while we are striding confidently ahead.

Brian: 	 	 Au contraire, I think we know something they don't. The proof
of the pudding is in the eating. Over the past 3 months our team using our DSI
paradigm has produced many more robust software solutions than they could
imagine in their wildest dreams. If they had observers in our camp, they would
report back, incredulous. How do those DSI dudes get so much done? How do
they manage to sidestep the process morass that bogs us down at every turn?

Eric:	 	 	 So, what is our BPM? I guess it would be, “To indelibly record
every event that might be of interest, and then analyze these records by means of
independent logic engines. Which can employ hidden databases. “

Norman: 		 Yes, that's well said, Eric. That is how we have approached
every project, and it has worked well for us. It seems that the gulf separating our
paradigms is so vast that we live in separate worlds. Truly – I think they are
dinosaurs. Developer teams that use our paradigm will typically under-quote
teams that use their paradigm by at least an order of magnitude!

47

http://docs.media.bitpipe.com/io_10x/io_101940/item_478548/IBM_ebizQ_LI%23478548_E-Guide_111111.pdf
http://docs.media.bitpipe.com/io_10x/io_101940/item_478548/IBM_ebizQ_LI%23478548_E-Guide_111111.pdf
http://docs.media.bitpipe.com/io_10x/io_101940/item_478548/IBM_ebizQ_LI%23478548_E-Guide_111111.pdf
http://docs.media.bitpipe.com/io_10x/io_101940/item_478548/IBM_ebizQ_LI%23478548_E-Guide_111111.pdf
http://docs.media.bitpipe.com/io_10x/io_101940/item_478548/IBM_ebizQ_LI%23478548_E-Guide_111111.pdf
http://docs.media.bitpipe.com/io_10x/io_101940/item_478548/IBM_ebizQ_LI%23478548_E-Guide_111111.pdf

C H A P T E R 34

The Team Addresses Database
Atomicity

 Phil: 		 	 Norm, I think we may have a Big Problem! How are we going
to handle the requirement to ensure that a group of reserved seats is removed
from seat inventory only when payment is complete? How are we going to reverse
the seat removal from Available Seat Inventory, if payment fails?

Norman:	 	 Well, Phil, I see why the Database guys have troubles with this,
but why do you fear that we can't handle it? All we ever do in DSI is record the
sequence of events. If the last step in the Reservation process - Payment - fails to
complete then this is apparent with the passage of time (in which case the
transaction Aborts), or with an explicit Transaction Failed To Complete DSI
message.

Phil:	 	 	 So you're saying that it's up to the Seat Inventory module to
watch for payment to complete?

Norman: 		 Yes. When anybody wants to audit for Atomicity, they would
naturally look at the Seat Inventory module to see how it was implemented. If the
logic is not there, or not properly handled, then we know exactly where to make
the logic improvements. This is better than leaving it to the Database utilities
where we will never see how it is done.

Phil: 		 	 OK, I see. And in our DSI world we can always examine
historical Atomicity if there's a problem reported, because DSI is a perpetual log
of time-stamped events.

Norman:	 	 Yes. And we can test various candidate Modules to see which
performs best in a given environment. We can optimize a Module to an extreme
extent if we choose to. For example, imagine a Module that down-counts a finite
resource like Reserved Seats, and uses a C array in memory. This would run
amazingly fast, because it is purpose-built and has no other constraints upon it.

48

Phil: 		 	 What I like about the DSI approach is that every processing
Module exists in its own bubble. So the Modules that form a project can employ
many different technologies over the years. And the technologies used can be in
constant flux. Now it seems to me that DSI is Object Oriented Computing, using
a paradigm that we can live with and prosper with!!

49

C H A P T E R 35

The Team Addresses Race Conditions
 Phil:	 	 	 Norm, how are we going to handle Race Conditions - you
know, like selling stocks on an Exchange, say?

Norman: 		 OK, let's consider a finite resource like a new stock issue, an
IPO. As the sales get down to the last few shares, how shall we avoid over-selling
these shares.

Eric: 		 	 We would build a Module that would grant each share
purchase and reduce the finite number of shares available for sale. Requests would
be handled on a first-come basis. Each request is time-stamped. If multiple
requests have the same time down to the millisecond, then the first of these
DSRecord that the Module processes will get the last shares. And maybe not get
all the shares that were requested.

Norman: 		 OK. And you could treat the race like a photo-finish at the
horse track if it was crucial. A Judge can do this by reviewing the DSI traffic at the
end.

50

C H A P T E R 36

The Team Tackled Insurance
 Norman: 		 We just got a sales enquiry from the Insurance industry. What
do you fellows think?

Eric: 		 	 “I think we can make a very good system for insurance, in
DSI.”

Brian: 	 	 “That's goofy. It takes years to do an insurance system. I know,
I've been there.”

Eric: 		 	 “Granted. But now we're a Skunkworks, and we perform
Miracles every day. Besides, insurance is basically simple. Fill in a policy
application, rate the risk, collect the premium. When claims come in, you fill in a
claim application, check that the policy is paid up and covers the loss, then cut a
cheque. Insurance is not rocket science.”

Brian: 	 	 “I can't really argue with that, Eric. Insurance is basically
simple - but the devil is in the details, as always!”

Norman: 		 Well, let's give it two weeks and see if it yields easily or not.

The team made rapid headway in establishing the first CD record formats, for
life insurance. Client ID, Policy #, Beneficiary, Amount, Medical declarations, etc.
All items that are “of interest” and printed on a policy. Then they added fields for
premium payment history and some underwriting data.

51

C H A P T E R 37

The Team Built a Supermarket
Product Locator Terminal

 Norman:	 	 We just got a sales enquiry for a customer-operated terminal
for use in a Supermarket, to assist customers in finding food items in the store.

Brian:	 	 Now that's a great idea! I would use that every week, at least.
And I would prefer the store that had this system!

Norman: 		 OK, let's get started. I can see a simple Touchscreen GUI
shoebox for the customer to operate. He would start spelling the item he wants,
and another shoebox with access to a product database would generate several
proposals until the customer selects one of them.

Eric:	 	 	 OK, the item database could come from the store's POS
system, so it is gifted to us. We could take an extract once a week, say. Or once a
day. Whenever the shelf locations change.

Phil:	 	 	 So we need CD/DSRecords to deliver the letters as they are
entered by the customer.

Norman: 		 Yes, for example A - R - T - I - C - H - O - K - E - H - E - A -
R - T - S. But generally the first 2 or 3 letters will bring the desired item into view.

Brian: 	 	 When the customer spies her item, she selects it. And then the
aisle and location appears. She can print a slip to take with.

Norman: 		 The user might have a list of 10 items in a session. The aisles
would be clearly numbered. A store map printout would be nice. Perhaps mark a
route from the terminal to each item?

Ann: 		 	 You know this customer terminal, why not make that a
Smartphone?

Brian: 	 	 Great concept! Let's do that.

52

Norman: 		 OK, we'll build a bare-bones proof of concept and we can
embellish it later when we have a contracted client.

53

